Top Quark Mass Measurements

Florencia Canelli Fermilab

for the CDF and DØ collaborations

ICHEP 2006

The top quark

The top quark is distinguished from other fermions by its huge mass

- As a consequence, the top quark plays a special role in the Standard Model
- Top is the only fermion for which the coupling to the Higgs is important

Precision M_{top} measurements

- Allows for prediction of the mass of the Higgs boson
- Constraint on Higgs can point out to physics beyond the standard model
- Consistency checks of the standard model parameters

Top quark production and decay

At the Tevatron produced mainly in pairs and it decays before hadronizing

• 3 different channels with different sensitivity and challenges

Integrated Luminosity

- CDF Lepton + Jets
- O D0 Lepton + Jets

The most sensitive results

About half as precise but provides a consistency check among channels

• For the first time systematically dominated!

A new combination adding all the best results in each channel

Extraction Techniques

- Need to extract M_{top} from imprecise measurements (jets) and non-measured (neutrino) quantities
- Template analyses:
 - Evaluate a variable strongly correlated with M_{top}
 - Obtain M_{top} comparing data to Monte Carlo with different M_{top} input
- Matrix Element analyses:
 - Evaluate ttbar and background probabilities as a function of M_{top}
 - Obtain M_{top} multiplying event probabilities

Systematic uncertainties dominated by the uncertainty on parton energies (*Jet Energy Scale, JES*)

- Final state: one high p_T lepton, missing transverse energy, and 4 or more jets
- Good branching fraction (~30%) and high S:B = 1:4 to 11:1 (depending on the number of b-tags)
- Main background: W + jets
- Combinatorial background :12 combinations
- JES can be measured in the same sample (JES in-situ)

Good agreement between data and Monte Carlo

- These analyses were designed to optimize the use of kinematic and dynamic information
 - Probability for a tt and W+jets hypothesis (Matrix Element Method)
 - Integrate over all the unmeasured quantities and experimental resolutions

$$\overline{P}(x; M_{top}, JES) = \frac{1}{\sigma} \int d^n \sigma(y; M_{top}) dq_1 dq_2 f(q_1) f(q_2) W(JES, x, y)$$

Likelihood used to fit simultaneously M_{top}, JES, and signal fraction, C_s

$$L(C_s, M_{top}, JES) \propto \prod_{i=1}^{Nevents} (C_s P_{ttbar,i}(M_{top}, JES) + (1 - C_s) P_{W+jets,i}(JES))$$

 CDF has used 940 pb⁻¹ and measured with 166 candidates with at least one b-tagged jet

$$M_{top} = 170.9 \pm 1.6 \text{ (stat.)} \pm 1.4 \text{ (JES)} \pm 1.4 \text{ (syst.)} \text{GeV/c}^2$$

Most precise world measurement

 D0 has used 370 pb⁻¹ and measure with 175 candidates with and without b-tagging requirement

$$M_{top} = 170.3 \pm 2.5 \text{ (stat.)} \pm 3.5 \text{ (JES)} \pm 1.5 \text{ (syst.)} \text{GeV/c}^2$$

• The other systematic uncertainties

Source of uncertainty	CDF Magnitude (GeV/c²)
b-JES	0.6
Signal (Initial and final state radiation, parton distribution functions)	1.1
Background (composition and shape)	0.2
Fit (Method, Monte Carlo statistics)	0.4
Monte Carlo (Modeling of ttbar)	0.2
Total	1.4

Dilepton

- Final state: 2 high p_T leptons, 2 bjets, and missing transverse energy from the 2 neutrinos
- Small branching fraction (~5%) and very high S:B = 2:1 (no b-tagging)
- Combinatorial background: 2 combinations
- Main backgrounds: Drell-Yan, fakes
- 2 neutrinos: under constrained, kinematically complicated to solve M_{top}

Dilepton

- For an assumed M_{top} there are different kinematical solutions that are consistent with the observed momenta of the final state particles
 - Neutrino weighting
 - Matrix element weighting
- Compare data with Monte Carlo events generated with different M_{top} (templates)
- Using 370 pb⁻¹ D0 combine these results and obtains

$$M_{top} = 178.1 \pm 6.7 \text{ (stat.)} \pm 4.3 \text{ (JES)} \pm 2.1 \text{ (syst.)} \text{GeV/c}^2$$

Neutrino weighting in $e\mu$ channel with 835pb⁻

 $M_{top} = 171.6 \pm 7.9 \text{ (stat.)} \pm {}^{5.1}_{4.0} \text{ (syst.)} \text{GeV}/\text{C}^2$

Dilepton

- Probabilities calculated integrating over all the unmeasured quantities and detector resolutions
- Using 1030 pb⁻¹ and 78 candidates CDF measures

$$M_{top} = 164.5 \pm 3.9 (stat.) \pm 3.5 (JES) \pm 1.7 (syst.) GeV/c^2$$

 Cross-check result requiring btagging (S:B=11:1)

$$M_{top} = 167.3 \pm 4.6 (stat.) \pm 3.3 (JES) \pm 1.9 (syst.) GeV/c^{2}$$

All-Jets

- Final state: 6 high p_T jets
- Very good branching fraction (~44%) but huge amount of background S:B = 1:8 (after requiring b-tagging)
- Combinatorial background: 90 combinations
- Main background: multi-jet QCD production
- Could use in-situ JES uncertainty

All Jets

- Use data-driven background obtained before b-tagging jets
- Neural Network selection to improve S/B = 1/2

All Jets

- Template method with fitted M_{top}
- 6 ≤ N_{jet} ≤ 8 with only the first 6 jets in order of decreasing E_T are used
- Kinematical fitter chooses among 30 possible permutations of jets
- CDF measures using 1020 pb⁻¹ with 772 events and S/B=1/2

 $M_{top} = 174.0 \pm 2.2 \text{ (stat.)} \pm 4.5 \text{ (JES)} \pm 1.7 \text{ (syst.)} \text{GeV/c}^2$

Combination

- Excellent results in each channel
- Combine them to improve precision:
 - Include Run-I results
 - Account for correlations
 - Use Linear Unbiased Estimator (NIM A270 110, A500 391)
 - We reached a precision of 1.2% in M_{top}

 $M_{top} = 171.4 \pm 1.2 \text{(stat.)} \pm 1.4 \text{(JES)} \pm 1.0 \text{(stat.)} \text{GeV/c}^2$

Comparison

Are the channels consistent?

```
\begin{array}{lll} \mathsf{M}_{\mathsf{top}}(\mathsf{All\ Jets}) &=& 173.4 \pm 4.3\ \mathsf{GeV/c^2} \\ \mathsf{M}_{\mathsf{top}}(\mathsf{Dilepton}) &=& 167.0 \pm 4.3\ \mathsf{GeV/c^2} \\ \mathsf{M}_{\mathsf{top}}(\mathsf{Lepton+Jets}) &=& 171.3 \pm 2.2\ \mathsf{GeV/c^2} \end{array}
```

- We compare them taking into account their correlated systematic uncertainties
- Determination of M_{top} from the 3 different channels is consistent with one another

M_{top} future

- New results are better than our predictions 6 months ago
- Will add to the prediction all-jets channel
- Add JES to all-jets could make sensitivity comparable to lepton+jets
- D0 has similar sensitivity (new results with 1fb⁻¹ coming soon)
- We expect to achieve an uncertainty of 1 GeV in the next years

Conclusions

- New more precise measurements in every channel from CDF and D0
- New world average

$$M_{top} = 171.4 \pm 2.1 \,\text{GeV/c}^2$$

- Present uncertainties on M_{top} and M_{W} help constrain M_{Higgs} to about 35% $\delta M_{Higgs}/M_{Higgs}$
- Tevatron should reach a precision of <1% with the full Run II data set

Extra Slides

CDF Summary

- In this talk I only showed results with ~1fb⁻¹
- Many other results using different methods underway
- Helps builds confidence in our results
- Improve result combining them

Tevatron combination

CDF combination

